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State-specific Brueckner equation-of-motion coupled-cluster theory (SS-B-EOMCC) is summa-
rized, which can be considered an internally contracted version of a state-selective
multireference coupled-cluster theory, which, however, is not entirely size-consistent. The
method is applicable to general multireference problems, adheres to the space and spin sym-
metries of the molecular system, is straightforwardly extended to a state-averaged version,
and has an associated perturbative variant which yields results close to the full coupled-
cluster treatment. A key strength is that Brueckner orbitals are used, such that orbitals are
optimized in the presence of dynamic correlation. A number of variations on the theme of
SS-EOMCC is applied to study the ionic-covalent avoided crossing in LiF in a
6-311++G(3df,3pd) basis set. While reasonable results are obtained at the state-averaged
level, the iterative solution process does not consistently converge for SS-EOMCC, due to
the non-Hermiticity of the transformed Hamiltonian which may yield complex eigenvalues
upon truncated diagonalization. This leads to an irrevocable breakdown of the state-specific
EOMCC approach. We indicate some future directions that can resolve some of the prob-
lems with the SS-EOMCC methodology, as revealed by the demanding test case of the LiF
potential energy curves.
Keywords: Coupled clusters; Multireference methods; Quantum chemistry; Hamiltonian;
CCSD; Ab initio calculations.

In recent years coupled-cluster theory has seen an increasing number of ap-
plications to open-shell problems. This is true in particular for applications
to electronically excited states, which are usually accurately described by
coupled-cluster linear response theory1–6, or equivalently for most pur-
poses, equation of motion coupled-cluster theory7–13. Likewise, Fock space
coupled-cluster theory14–21, in particular in the intermediate Hamiltonian
formulation of Meissner et al.22–25, which has been used extensively by
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Kaldor et al.26–29, and closely related, similarity transformed equation of
motion coupled-cluster theory30–36, are applicable to sizeable molecular sys-
tems. For EOMCC in its IP/EE/EA variants37–39 and for STEOM in the
DIP/EE/DEA variants40–42 analytical energy gradients are available, testify-
ing to the routine usage of these methodologies, e.g.43,44 At the current
forefront of excited state calculations is the simulation of spectra, including
the effects of nuclear motion. Both Franck–Condon approaches45–47 and
non-adiabatic vibronic models47–51 are currently in use, and often very nice
agreement with experiment is reported. The description of electronically
excited states is straightforward using coupled-cluster methods if the
ground state (or parent state) is well described at the single-reference level.
These methods have to large extent a black box character, which makes
these calculations user-friendly for experts and novices alike.

The description of potential energy surfaces at the coupled-cluster level,
or the description of molecules without a well-behaved parent state is far
more cumbersome. Single-reference techniques continue to have their ap-
peal, and the spin-flip approach by Krylov et al.52–57 and the renormalized
CC methods by Piecuch and Kowalski58–60 have been applied successfully to
a variety of problems. It is likely in our opinion that these approaches will
be limited to certain classes of problems, which are however of great inter-
est to chemistry. There is in addition a need for generally applicable
multireference coupled-cluster (MRCC) methods. There is consensus in the
literature that state-specific methods are preferable, as multistate or effec-
tive Hamiltonian methods are likely prone to intruders at some region of
nuclear configuration space. In order to ensure continuous potential energy
surfaces one should ideally use a single parametrization for the wave func-
tion across the complete region of interest. Several methods, notably the
state-selective MRCC method by Mukherjee et al.61–68, the multireference
Brillouin–Wigner method by Pittner et al.69–72 and the unitary group based
approaches by Paldus and Li73–75 have witnessed promising progress in re-
cent years. One practical limitation of these methods is that they are built
upon the Jeziorski–Monkhorst parametrization76, implying that the number
of cluster amplitudes grows linearly with the number of reference configu-
rations, which limits the applicability of this class of methods. Another
type of approach is the single-reference inspired state-selective MRCC work
by Adamowicz et al.77–81, and relatedly the CCSDt and CCSDtq approaches
by Piecuch et al.82,83 The number of amplitudes in these methods likewise
shows an unfavourable scaling with the size of the active space. A method
that behaves quite differently in this respect is the reduced multireference
CCSD method by Li and Paldus84–88, which is based upon the same number
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of CCSD amplitudes as in the single-reference case and a generally small
number of higher-order amplitudes, which are obtained from an external
calculation, typically MRCI in a limited orbital/reference space. Meissner et
al. have presented cluster corrections to MR-CISD calculations which are
non-iterative analogs of the RMR-CCSD approach by Li and Paldus89,90.

The importance of the computational scaling of multireference coupled-
cluster approaches with the size of the reference space may be surmised
from the literature on multiconfigurational perturbation theory91–96. MRPT
is applied to a great variety of problems and the number of reference states
can be very large (on the order of a hundred thousand perhaps). Such large
reference spaces will almost certainly be needed frequently to provide
meaningful descriptions of compounds involving transition metal atoms,
for example. With this type of applications in mind, in our group we have
been working on MRCC theories of the internal contracted variety30,97–99.
In effect we define a similarity transform of the Hamiltonian, of a single-
reference format $ $$ $

H HT T= −e e , which is diagonalized over a large set of con-
figurations. We are interested in only one or very few eigenstates of the
transformed Hamiltonian, and the t-amplitudes that enter the transforma-
tion, as well as the orbitals, are optimized for precisely the states of interest.
The formulation appears similar to EOMCC theory, but the methodology is
state-specific. Our current preliminary implementation of the theory is
closely related to the DIP-EOMCCSD method41, in which the CCSD equa-
tions are solved for a reference state that contains two more electrons than
the states of interest. The transformed Hamiltonian $ $$ $

H HT T= −e e is subse-
quently diagonalized over the 2h and 3h1p configurations to access the
states of interest. This allows the description of a number of multi-
configurational situations, in particular the breaking of single bonds, and
the description of biradicals. However, orbital relaxation effects (to describe
the change from N+2 to N-electron systems) can be important and these are
not very well treated in the DIP-EOMCCSD method. Moreover, results may
be unphysical using large diffuse basis sets if the parent state is a dianion,
as occurs for example in the DIP-EOMCCSD description of the neutral
states of ozone. Similar difficulties face the DIP-STEOM and DIP-FSCC ap-
proaches, although very good results can be obtained in smaller basis sets,
e.g. ref.33 The present state-selective EOMCC approach alleviates these
problems as both orbitals and cluster amplitudes are optimized for the
states of interest. Moreover, the theory applies directly to systems in which
the vacuum state in the many-body theory has many more electrons than
the states of interest. For example, to treat the Mn dimer we would envision
a vacuum state with 10 more electrons to completely fill the d-shell. In the

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1084 Nooijen, Shamasundar:



final diagonalization step based on the transformed Hamiltonian we would
remove 10 electrons from an active space and in addition include single ex-
citations. It will be clear that the vacuum state only serves as a formal de-
vice in the theory, and the theory is conceptually removed from equation-
of-motion coupled-cluster theory, and certainly from coupled-cluster linear
response theory, as the vacuum state in our theory does not carry a physical
significance. In many respects the theory should be viewed as an internally
contracted multireference method, however the formulation we employ is
not exactly size-consistent. For this reason we refer to the methodology as a
state-selective EOMCC method. Very few applications of the method have
appeared to date, as we are still working to resolve a number of technical
difficulties, as will be discussed here.

In this paper we focus on the application of the state-selective equation-
of-motion coupled-cluster method to the ionic-covalent curve crossing of
LiF. This problem is a crucial test case for multireference methods as it in-
volves a narrow avoided crossing between two states which have a very dif-
ferent orbital character. Moreover, the curve crossing is located at a com-
pletely different internuclear distance if dynamic correlation is included,
than when it is based on a mean-field description. The orbitals that de-
scribe the two states of interest are for this reason obtained from Brueckner
type of calculations100–103. The fact that each state requires a different set of
orbitals means that one in principle should not use a state-averaged calcula-
tion. Rather, both states should be described in separate state-specific calcu-
lations. This makes it hard to describe a smooth avoided crossing, as the
calculations cannot benefit from a joint diagonalization which would lead
naturally to an avoided crossing as in a 2 × 2 eigenvalue problem. These in-
teresting features of ionic-covalent curve crossing problem were described
by Spiegelmann and Malrieu104,105 for the similar case of NaCl. The LiF mol-
ecule has been a test case of multistate CASPT2 studies106,107 and quasi de-
generate perturbation theory studies by Nakano et al.94,108 An extensive
study employing the multistate CASPT2 approach to a number of alkali ha-
lide molecules was presented recently109. In all of the multireference pertur-
bation theory calculations best results are obtained using an interacting
state model that assumes a common set of orbitals for both states. This
strategy provides a smooth curve crossing, but is not ideal as the optimal
orbitals for each of the two states can be expected to be very different. By a
careful inspection of the potential energy curves presented by Finley et
al.106 it is seen that the avoidance exhibited by the potential energy curves
is actually too strong and for large R the ground state curve bends down-
wards, clearly indicating too strong of a mixing in the multistate treatment.
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The LiF curve crossing has also been studied using the density matrix
renormalization group110, and the advantages of this methodology which is
not biased by orbital selection were convincingly demonstrated. Neverthe-
less, pure DMRG is not necessarily a very effective approach to include dy-
namic correlation effects in large basis sets.

In this paper we will describe the SS-EOMCC methodology in some detail
and investigate its applications to the LiF ionic-covalent curve crossing
problem in a 6-311++G(3df,3pd) basis set111. Even though our results will
clearly show much to be desired, we think we can indicate some promising
aspects of our approach. Even more importantly, the calculations reported
in this paper clearly point to some alternative directions which will have to
be pursued in the future.

THEORY

Parametrization of the Wave Function

Following our previous work99 we use the following parametrization for the
wave function
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The closed-shell vacuum state |0〉 contains two more electrons than the
states we are interested in, and this defines a set of occupied orbitals, la-
belled i, j, k, ... and virtual orbitals, denoted a, b, c. The precise definition of
the vacuum state is critical to the approach, and we will consider a few vari-
ations to define this state, to be discussed below. The cluster operator $T has
precisely the same form as the single-reference, spin-adapted cluster opera-
tor for a closed shell system, but the equations that define the amplitudes
will be different. The elementary excitation operators are the generators of
the unitary group $ $ $ $ $† †E a a a ap

q
q p q p= +α α β β , where α, β indicate the spin part of

the orbital. Above we use the same notation for spatial orbitals and
spin-orbitals, while the distinction is made by the operators: $Eq

p indicates
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spatial orbitals are used, while $ , $†a aq p refer to spin-orbitals. The operator $C
has the same form as in the DIP-EOMCC method41,112. It consists of 2h and
3h1p excitation operators. The equations that define the operator $C are the
same as in the DIP-EOMCC equations, but based on a vacuum state and
cluster amplitudes that are defined precisely for the states of interest. They
are not determined by an underlying closed-shell CCSD calculation, and for
this reason we refer to the approach as state-specific. To obtain the ampli-
tudes for the operator $ ,C as well as the final energies, the transformed
Hamiltonian $ $$ $

H HT T= −e e is diagonalized over the 2h and 3h1p determi-
nants $ $ | , $ $ $ $ |†a a a a a ai j i j a k0 0〉 〉 . This diagonalization step is quite compact and,
moreover, for the diagonalization step we do not require the numerous $H
two-electron operators that have 3 or more virtual indices. The final states
will have the proper spin symmetry properties as the transformed
Hamiltonian is expressed in terms of generators of the unitary group, while
the diagonalization manifold is also spin-adapted. Regarding spatial sym-
metry the issue is similar, although we may have to use state-averaging over
degenerate states (Π states for example) to preserve spatial symmetry while
solving for the t-amplitudes. The vacuum state is always chosen to be
closed-shell, both with respect to spin and spatial symmetry.

The equations that define the cluster amplitudes use a reference state that
provides a qualitatively correct description of the wave function. The refer-
ence state is parametrized as

| $ | , $ $ $R R R r a aij i j〉 = 〉 =0 (2)

but the precise definition of the reference state (subject to the above
parametrization) is again somewhat flexible. We will discuss a small num-
ber of variations below. In terms of the reference state the equations for the
cluster amplitudes read

〈 〉 ≡ =−0 0 0| $ $ $ $ |† $ $
R E H R Qa

i T T
i
ae e

〈 〉 ≡ =−0 0 0| $ $ $ $ $ | .† $ $
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i
b
j T T

ij
abe e

It is important to note that the above equations are not projections of the
Schrödinger equation, which would involve $ $ |

$
H CTe 0〉 instead. In ref.99 we

investigated both of these variants, and we concluded that the use of
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$ $ |
$

H RTe 0〉 was the more promising and more straightforward approach. This
approach was denoted RSS-EOMCCSD (“restricted or R-based” state-
selective EOMCC) before99. Here we will simply denote the approach as
SS-EOMCCSD. The exactness of the approach in the limit follows from us-
ing a complete diagonalization manifold, and this is independent of the
equations satisfied by $T. This reflects the basic difficulty in “deriving”
multireference coupled-cluster methods: there is no strict requirement for
the cluster amplitudes, and we must be guided by practical results in trun-
cated diagonalization spaces.

If we have defined a reference state, we can in principle solve for the
t-amplitudes, obtain the required matrix-elements of the transformed
Hamiltonian, and diagonalize to obtain the final eigenvector C and energy
E.

The scheme can easily be adjusted to calculate a number of states in a
state-averaged fashion. If we have a number of reference states |Rλ〉 , and
weights wλ satisfying: 0 ≤ wλ ≤ 1, wλ

λ
∑ = 1, the state-averaged CC equations

are defined by
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In practice the detailed amplitude equations are phrased in terms of the
spin-summed state-averaged density matrices

D w R E Ri
k

i
k= 〈 〉∑ λ λ λ
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| $ |
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i
k

j
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λ
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and the only change in the algorithm is the appropriate definition of the
reference density matrices.
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Solution of CC Equations and Definition of Zeroth-Order Hamiltonian

The solution of the nonlinear equations for the t-amplitudes is nontrivial
and deserves some discussion. To update the t-amplitudes we calculate a
correction vector ∆T, by solving

− 〈 〉 = = 〈 〉∑ w R E H T R Q w R E X Ra
i

i
a

a
i

λ λ λ
λ

λ λ λ| $ [ $ , $ ]| | $ $ ]|0 1 1∆
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∑

− 〈 〉 = = 〈∑ w R E E H T R Q w R E Ea
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ij
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0 2∆ b

j X R$ ]|2 λ
λ

〉∑ (5)

where $ { $ $}†H p ppp0 = ∑ ε is a diagonal zeroth-order Hamiltonian (to be dis-
cussed below), while $ [ $ , ], , .X H T ii i= − =0 1 2∆ The residual amplitudes Q are
calculated as in Eq. (3). If the operator $X is known, it is trivial to solve for
the correction vector ∆T and a standard DIIS procedure can be used to ac-
celerate convergence113. The equations for the amplitudes of $X are linear
and, moreover, they are diagonal in the virtual indices, as each of the refer-
ence states |Rλ〉 is expressed purely in terms of occupied orbitals in the vac-
uum state |0〉 . The update equations can be written as

A X Qik k
a

i
a

k

=∑

A X Qij kl kl ab ij
ab

k l
, ,

,

=∑ (6)

where the matrices A can be expressed in terms the one- and two-particle
reduced density matrices corresponding to the reference state(s). The matri-
ces A can be singular or nearly singular, but their dimensions are not very
large. Hence we solve the equations by diagonalizing these matrices and
only keeping those eigenvalues/eigenvectors in the inverse, which are
smaller than a predetermined threshold. Unfortunately, this can easily lead
to small discontinuities if a potential energy surface is evaluated. These
problems are reduced if some kind of state-averaging is used, such that we
do not have to discard any eigenvectors from the inverse. In practice we in-
clude multiple states therefore, even in a purely state-selective procedure.
Typically we would add 0.05 times the average density over all included
states plus 0.95 times the density of the true state of interest. This type of
mixing will hardly affect the final result, but the stability of the approach is
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increased, certainly if the interest is a continuous potential energy surface.
In the calculations on LiF below we have always included the two lowest
states of 1Σ symmetry and the two degenerate 1Π states in the calculation,
adjusting the weights that define the density matrices according to the spe-
cifics of the calculation and state of interest.

The definition of the canonical orbitals and diagonal orbital energies in
$H 0 also poses an interesting problem. In principle we have two require-

ments. First of all we would like to achieve a smooth convergence of the CC
iterations. Secondly, we would like to obtain reasonable results from the
first iteration of the equations, which can be used to define a lowest order
perturbation theory. Hence we define a perturbative variant by solving the
cluster amplitudes from the first iteration to yield $ ( )T 1 . The final energies
are obtained by diagonalizing $ $[ ] $ ( ) $ ( )H HT T1 1 1= −e e over the usual set of con-
figurations. Furthermore we realize that the occupied orbitals in $T or $C al-
ways correspond to annihilation operators, even while the orbitals have
partial occupation numbers in the reference state. For this reason the occu-
pied orbital energies should refer to an ionization process. This can be
achieved by defining the orbitals and orbital energies following the ex-
tended Koopmans’ theorem (EKT), which has an interesting history in
quantum chemistry114–121. In the extended Koopmans’ formulation one de-
fines a non-orthogonal set of basis states | $ |Φi ia R〉 = 〉 and solves for
variationally optimal ionized states through

〈 − 〉 = 〈 〉 −∑ ∑R a H E a R c R a a R c E Ej i i
i

j i i
i

| ( $ ) $ | | $ | († †
0 0µ µ µ

IP ) (7)

which we approximate as

〈 〉 =∑ ∑R a H a R c D cj i i
i

i
j

i
i

| [ $ , $ ]|†
µ µ µε IP (8)

where ε µ µ
IP IP= −E E0 . Moreover, we symmetrize the matrix on the left-hand

side before solving the generalized eigenvalue problem. The coefficients c
satisfy the normalization c†Dc = 1. After solving for the EKT eigenstates and
eigenvalues, a set of orthonormal orbitals is obtained by symmetric ortho-
gonalization of c. The orbital energies are defined as the EKT ionization po-
tentials corresponding to the reference state. For the virtual orbitals we fol-
low the same procedure, using basis states | $ |†Φa aa R〉 = 〉 . In this case the pro-
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cedure is equivalent to diagonalizing the virtual–virtual block of the Fock
matrix corresponding to the one-particle reduced density matrix of the ref-
erence state, since the reference state has zero occupation of virtual orbitals
by definition. Both the IP and EA EKT equations are easily expressed in
terms of the one- and two-particle reduced density matrices of the reference
state and hence can be generalized into a state-averaged version (with a less
straightforward interpretation).

Let us emphasize that the orbital energies for the (partially) occupied
orbitals are very different from a diagonalization of the Fock matrix. A clear
example would be provided by a multireference treatment of the H2 mole-
cule, taking the σ and σ* orbitals to form the vacuum state |0〉 , containing
4 electrons. If the eigenvalues of the Fock matrix are used, the σ* orbital
would have a positive orbital energy, and it would be embedded in a set of
diffuse Rydberg orbitals. The σ* orbital energy would correspond to the
electron affinity of neutral H2. The Rydberg virtual orbitals would have simi-
lar energies as the formally occupied σ* orbital and the corresponding en-
ergy denominators might be very small. The first-order amplitudes might
easily have the wrong sign (compared to converged CC amplitudes). In our
EKT picture the orbital energy of the σ* would be the difference between
the energy of ground state of the neutral H2 molecule and the H2 cation in
the σ* orbital/state. The shift in energy between these two definitions could
be as large as 15 eV, from +5 eV for the Fock matrix variant to –10 eV for
EKT. In practice, our equations converge smoothly, while also first-order
perturbative corrections are generally of high quality, as will be demon-
strated in the Results. This testifies that the physical ideas that underly the
EKT inspired definition of $H 0 are correct. Using the EKT form of the
zeroth-order Hamiltonian the SS-EOMCC equations can be solved even in
very diffuse basis sets, which previously used to present severe problems.
We no longer experience convergence problems that we can attribute to
solving the CC equations (there are others though).

Brueckner Optimization of Orbitals and Definition of the Reference State

We still require a precise definition of the reference states | $ |R Rλ λ〉 = 〉0 , and
a definition of the orbitals that define the vacuum state. The most satisfac-
tory approach for a system like LiF obtains if both the reference state and
the orbitals are defined in the presence of dynamic correlation. This is pos-
sible if we define the reference state to be precisely the 2h component of
the final correlated state | $|

$
Ψ〉 = 〉eT C 0 , or $ $R C= 1 . The t-amplitudes are de-

fined in conjunction with the vacuum state and the reference state, follow-
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ing Eq. (3). The coefficients t i
a can be used to define a set of rotated orbitals

|
~

| |i i a t
a i

a〉 = 〉 + 〉Σ . These orbitals are not orthogonal, but they are easily
orthonormalized and this defines the new set of orbitals that defines the
new vacuum state |0〉 . This procedure is analogous to the use of Brueckner
orbitals in single-reference coupled-cluster methods100–103. Taking the
t1-amplitudes as the orbital rotation parameters, we iterate until conver-
gence as in conventional Brueckner calculations. This B-SS-EOM-CCSD ap-
proach has the advantage that all parameters are optimized for the precise
state of interest and in the presence of dynamic correlation effects.

Unfortunately, the present Brueckner approach has a drawback in prac-
tice. The transformed Hamiltonian $H is non-Hermitian, and near the
avoided crossing in LiF the energies obtained from a truncated diagonal-
ization can become complex. This problem tends to be worse as we are in
the process of trying to converge the equations and we acquire some large
t-amplitudes in the iterative cycling. If we obtain a complex eigenvector,
even if it is only during the process of converging the equation, it is impos-
sible to extract a meaningful state and we are forced to terminate the
state-selective iteration process. We think this is a very serious drawback of
the scheme, and we think that we will have to go back to the drawing
board and ultimately design a method in which the transformed
Hamiltonian is Hermitian. It should be the goal of multireference methods
to describe close-lying states and conical intersections, and non-Hermitian
Hamiltonians can be expected to lead to insurmountable difficulties in
such situations.

In this paper we follow an alternate track and consider the use of an
MCSCF reference state. This will also allow us to compare the results
between B-SS-EOM-CCSD and SS-EOM-CCSD based on an MCSCF reference
state in the regions of the PES where all calculations can be converged. The
MCSCF state $ |R 0〉 is defined by a CI over the 2h configurations, following
our usual prescription. We use a particular implementation of MCSCF and
optimize the orbitals using a CC singles approach, solving:

w R E H R Qa
i T T

i
a

λ λ λ
λ

〈 〉 ≡ =−∑ | $ $ | .
$ $

e e1 1 0 (9)

These equations, which apply equally to state-specific and state-averaged
approaches, can be converged in the usual Brueckner fashion. This results
in conventional variational MCSCF results, but we denote the approach as
Brueckner-MCSCF or B-MCSCF in short to reflect the particulars of the
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computational procedure. Unfortunately, converging state-specific MCSCF
calculations is also troublesome for the case of LiF. Near the avoided cross-
ing in LiF it is very hard to converge the B-MCSCF equations, due to
so-called root-flipping problems: it is very hard to keep track of the proper
state to optimize. This is true in particular for the excited state. If the
orbitals are optimized for the excited state this state becomes the ground
state in the limited CI, and moreover the 2h-CI coefficients (transformed to
the AO basis to facilitate tracking of the state) vary wildly during the orbital
optimization process. In our experience it is very hard to keep track of the
state, and in the literature this is referred to as a root-flipping problem.

For this reason we developed yet another approach to define the orbitals
and reference state, in an approach we denote as Brueckner-CI. In B-CI the
reference state is taken to be the 2h component of the full vector C ob-
tained by diagonalizing the bare Hamiltonian over 2h and 3h1p configura-
tions. This has the advantage that the bare Hamiltonian matrix is
Hermitian and the eigenvalues and eigenvectors are always real. Following
a similar recipe as in the B-SS-EOM-CCSD scheme the reference state is
taken to be the 2h component of the full vector C, $ $R C= 1 , and we use Eq. (9)
to define the orbital optimization process, just as in B-MCSCF. While in
B-MCSCF, the orbitals and reference state would be determined fully
variationally, this is not true for B-CI. In B-CI we diagonalize over a larger
space and from this extract the reference state. The subsequent orbital rota-
tion is determined with respect to a reference state therefore, which is not
itself variationally optimal.

Even though the results of converged B-CI and B-MCSCF calculations are
expected to be very similar, the convergence behaviour of these methods is
quite different. Interestingly, we experienced no convergence issues (root-
flipping problems) using the B-CI method, and it is easy to track states
through the crossing. This is due to the fact that relaxation effects are
treated in an approximate fashion in the CI, which includes single excita-
tions, and therefore the states are not so critically dependent on the
orbitals, and they can easily be tracked. In particular the true excited state
typically remains the excited state in the CI calculation, independent of the
orbitals. The state of interest, for which the orbitals are optimized, has very
little single excitation (i.e. 3h1p) character, as there is little need for inclu-
sion of orbital relaxation effects in the CI as the orbitals are nearly optimal.
This serves as a useful consistency check during the calculation. States for
which the orbitals are not explicitly optimized in the B-CI scheme have a
significantly higher 3p1h character. It is likely that the final B-CI states are
not very different from the MCSCF states, and they might even serve as a
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starting point to optimize the true MCSCF states if so desired. We think the
B-CI procedure might be of value in other procedures that require a CASSCF
or MCSCF solution without resorting to a state averaging procedure.

Unfortunately, as discussed before, for the LiF potential energy curve the
B-CI and B-MCSCF orbitals are far from ideal. Near the avoided crossing the
states of interest acquire an arbitrary mixture of ionic and covalent configu-
rations. The degree of mixing will depend greatly on dynamic correlation
effects, and this is included in neither the B-CI nor the B-MCSCF treatment.
Moreover, the optimal orbitals for these states will strongly depend on their
precise character. It would be far more satisfactory if the orbitals and the
reference state would be optimized in the presence of dynamic correlation.
But this requires a Hermitian transformed Hamiltonian as discussed before,
to avoid complex eigenvalues. In summary, at present we do not have a sat-
isfactory solution to this problem yet.

For all of these orbital/reference optimization approaches, which we term
B-MCSCF, B-CI, and B-EOMCC, we can define state-averaged and state-
selective approaches. Even for the state-selective approaches we use only a
weight of 0.95 for the state of interest, in order to alleviate problems with
near-singularities of the reduced density matrices of the reference state, and
to preserve continuous energy profiles.

RESULTS AND DISCUSSION

All of the calculations are using the 6-311++G(3df,3pd) basis set111 and all
orbitals are correlated. The SS-EOMCC calculations are of the
DIP-SS-EOMCC variety, meaning we have one more spatial orbital (2 addi-
tional electrons) in the vacuum compared to the actual states of interest as
described in the previous Section.

In Fig. 1 the results from a state-averaged SA-EOMCC calculation show a
qualitatively correct behaviour of the potential energy curves. The covalent
1Σ state is nearly degenerate with the doubly degenerate 1Π states in the as-
ymptotic region of large R. For decreasing internuclear distance this state
very rapidly changes character around 6 Å and turns into the ionic state.
Asymptotically, the ionic 1Σ state is higher in energy and has a characteris-
tic Coulombic tail at large R. In the avoided crossing region this state rap-
idly evolves into the covalent excited state. The orbitals required to de-
scribe the covalent and ionic states are quite different. This is not only true
for the highest lying valence orbitals but also for the deeper lying orbitals,
which are different for neutral and charged atoms. The effect can be ex-
pected to be more pronounced in larger basis sets. For this reason we expect
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the state-averaged EOMCC calculations to be deficient in some respects,
and this will be confirmed below, although the behaviour close to the
avoided crossing region might be acceptable (see the detail in Fig. 2).

Unfortunately, we do not have a fully accurate result in the 6-311++G(3df,3pd)
basis set to compare with. Hence we will make comparisons with results
from different types of approximate calculations. Many of our results are
sufficiently poor that it is not difficult to draw conclusions even in the ab-
sence of good reference data. Let us emphasize here that a balanced descrip-
tion of both 1Σ states of LiF over the entire range of internuclear distance is
a challenging problem for multireference methods. We think that a proper
description of these states is an important requirement of a generally appli-
cable multireference method. Our results will show clearly we have not
reached our goals yet, but they also point clearly towards possible improve-
ments.

In Fig. 3 we focus on the ionic state in the asymptotic region, which
diabatically connects to the ground state near the equilibrium geometry.
The single-reference CCSD curve shows a discontinuity near the avoided
crossing at around 6 Å. At the Hartree–Fock level the ionic state is lowest in
energy, even in the asymptotic region of large R. Up to around 6 Å the
CCSD solution follows the true ground state and acquires large single exci-
tation amplitudes in order to follow the transition to the covalent solution.
After the discontinuity CCSD follows the Hartree–Fock solution and con-
verges to the ionic state, which is an excited state at these distances, result-
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FIG. 1
State-averaged Brueckner EOMCC (SA-B-EOMCC) results for the ionic and covalent 1Σ states
and the doubly degenerate 1Π states in the 6-311++G(3df,3pd) basis set



ing in small singles amplitudes again. This example clearly illustrates po-
tential pitfalls in using single-reference methods to describe multireference
situations. Following the solution of interest is tricky, and the calculated
potential energy surface can exhibit discontinuities.

The behaviour of CCSD is exacerbated at the CCSD(T) level. The large
singles amplitudes in conjunction with the perturbative correction in (T)
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FIG. 3
A comparison of the ground state/ionic 1Σ potential energy curve calculated at the CCSD,
CCSD(T) and SS-B-EOMCC level of theory in the 6-311++G(3df,3pd) basis set

FIG. 2
Detail of the crossing region. Same SA-B-EOMCC calculations as in Fig. 1



give rise to a weird “cusp-like” behaviour near the crossing point and a
large discontinuity in the potential energy curve. The discontinuity in the
CCSD(T) energy is a direct consequence of the discontinuity in the CCSD
solution. Let us note here that it may be possible to solve for the covalent
CCSD solution towards the asymptote. It does appear to be a nontrivial
matter though, and it certainly does not seem to be the “black box” proce-
dure, which we have come to expect from CC methodology.

Next, we compare the single-reference curve to the state-selective
Brueckner EOMCC (SS-B-EOMCC) approach, which fares even worse. Near
the crossing point, between 6 and 7.5 Å we cannot converge the equations.
In our algorithm we start from orbitals from a previous geometry, but this
is insufficient to find the solution. In the crossing region the orbitals
change rapidly, and it appears impossible to find a good starting guess. Dur-
ing the iteration process we find large t1-amplitudes. Moreover, the
non-Hermitian Hamiltonian in the truncated diagonalization space easily
leads to complex eigenvalues when two states are very close in energy. If
this happens it is impossible to continue the calculations as there is no
meaningful way to extract one state of interest from a pair of complex con-
jugate eigenvectors. We think this is a very severe drawback of the current
methodology. We cannot expect to overcome these issues unless we resort
to a Hermitian transformed Hamiltonian, which in turn implies using a
unitary CC formalism or similar strategy. Let us note that we cannot actu-
ally conclude from the present calculations that (real) state-selective solu-
tions do not exist at the troublesome geometries. Perhaps the state-average
results even suggest they do exist, but they are certainly hard to find. It is
evident that the non-Hermiticity of the transformed Hamiltonian is a clear
danger when tracking for example conical intersections, and it serves little
purpose in our opinion to try to solve the convergence problem for this
particular case (if it is even possible). Moreover, the problem might show
up in a similar fashion for state-averaged approaches, for which the trans-
formed Hamiltonian is also non-Hermitian, although the iteration process
is more friendly in these cases as the average density matrix does not
change rapidly as one moves through a region with a crossing. The only ro-
bust solution appears to be the use of an explicitly Hermitian transformed
Hamiltonian.

In Fig. 3 and also in Figs. 4 and 5 which focus on the details of the PES
around the equilibrium distance and at large internuclear distance respec-
tively, we observe another interesting behaviour. If the state is well de-
scribed by Hartree–Fock the SS-B-EOMCCSD approach yields results that are
quite close to SR-CCSD, which is to be expected. However, as the state be-
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comes multiconfigurational SS-B-EOMCCSD starts to capture a significant
portion of connected triples effects and the curve moves much closer to the
CCSD(T) result. As a consequence SS-B-EOMCCSD is typically not well bal-
anced across a potential energy surface. As we do not wish to enlarge the
active space to capture the effects from connected triples, as is customary in
high-accuracy MR-CISD calculations, it appears vital to include a connected
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FIG. 5
Detailed ionic state potential energy curves in crossing region. Same calculations as in Fig. 3

FIG. 4
Detailed potential energy curves around equilibrium geometry. Same calculations as in Fig. 3



triples correction in our methodology. In summary, from this simple com-
parison and results that are poor in many respects we learned two impor-
tant things: (i) SS-EOMCCSD has to be reformulated to be based on a
Hermitian transformed Hamiltonian; (ii) SS-EOMCCSD requires a con-
nected triples correction in order to become a useful approach in conjunc-
tion with large basis sets, where effects from triples are particularly pro-
nounced.

In Fig. 6 we compare the state-selective SS-B-EOMCCSD results against
state-averaged SA-B-EOMCCSD results (discussed previously in conjunction
with Figs. 1 and 2) which comprise the two 1Σ and two degenerate 1Π states.
In the state-averaged calculations both the orbitals and the cluster ampli-
tudes are optimized based on the averaged density matrix. In both the
state-selective and the state-averaged calculations we use the Brueckner
scheme to optimize the orbitals, which are hence optimized in the presence
of dynamic correlation. Interestingly, in the SA-B-EOMCC scheme there are
no problems with complex eigenvalues and we find continuous curves that
show a nice avoided crossing. Moreover, the covalent/excited potential en-
ergy curve in SA-B-EOMCC is very close to the SS-B-EOMCC curve through-
out (where available). This is likely because there is a 3 to 1 bias to this state
in the state-averaged calculation as the 1Π states require a similar set of
orbitals and t-amplitudes as the covalent 1Σ. Also the ionic state is reason-
ably well described, but the energy at large R is too low, and this is likely
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FIG. 6
Comparison of state-averaged and state-selective Brueckner EOMCC calculations for the ionic
and covalent 1Σ states. The designation -X indicates the excited state at the ground state geometry,
-0 indicates the ground state at Re



due to the fact that the orbitals are compromised. We should expect the
correct solution to be close to the single-reference CCSD result, but the
SA-B-EOMCC result is even lower than CCSD(T). It is important to point
out here that the appropriate benchmark for the methodology in this re-
gion is CCSD, not full CI. A similar behaviour is seen near the equilibrium
distance and a calculated ground state energy that is clearly too low testifies
to the non-variational nature of the methodology: worse orbitals/ampli-
tudes leading to lower energies (and perhaps erroneous better comparison
to full CI). Overall we think (or perhaps better, we assume, for lack of accu-
rate reference data) that the state-averaged method describes the crossing
region itself rather well. The use of a common set of orbitals for states that
have a very different character yields resonable results in this region of the
PES. The common set of orbitals/amplitudes does deteriorate results away
from the crossing. For greater clarity the details around the crossing are
shown in Fig. 7.

In Fig. 8 we compare SS-B-CI-EOMPT calculations against SS-B-EOMCC.
In the B-CI orbital optimization we use the MCSCF+singles CI space (i.e. 2h
and 3h1p configurations) and optimize the orbitals using a similar ap-
proach as in the Brueckner CC schemes. It is worth noting that we found it
impossible to converge the MCSCF (2h configuration space) equations
themselves throughout the crossing region. Using the B-CI scheme we ex-
perienced no difficulties and we expect this scheme to be useful in general
where root-flipping problems occur in MCSCF or CASSCF calculations. As a
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FIG. 7
Detail of the crossing region. Same calculations as in Fig. 6



useful diagnostic to home in on a particular root we found that the single
CI (i.e. 3h1p) coefficients are always very small for the state of interest as
they describe primarily orbital relaxation effects. Both states can therefore
be easily characterized during the orbital optimization and this is clearly
beneficial. It is clear from Fig. 8 that the behaviour of the B-CI energies it-
self is very different from the SS-B-CI-EOMPT curves, which include dy-
namic correlation. The B-CI energies show a strange ‘discontinuous’ behav-
iour, although our impression is we can follow the energies along the de-
picted curves, and there are no true discontinuities. Moreover, the curve
crossing in B-CI occurs around 4 Å, far from the actual avoided crossing.
We did not get meaningful results solving for the SS-B-CI-EOMCC solutions
based on the B-CI orbitals, as we get very large t1-amplitudes and associated
problems in diagonalizing the transformed Hamiltonian. The perturbative
variant SS-B-CI-EOMPT shows a smooth behaviour, locating the curve
crossing around 6 Å, and following fairly closely the SS-B-EOMCC curve for
the lower state. It is important to note that the SS-B-CI-EOMPT curves sim-
ply cross and do not show an avoided crossing type of behaviour. More-
over, it is evident that the curves are somewhat irregular as they go through
the crossing region. One might think of these two states as ‘diabatic’ states
showing a real, not avoided, crossing. We anticipate this will be typical be-
haviour in state-selective approaches based on MCSCF quality orbitals,
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FIG. 8
Comparsion of Brueckner CI curves, and BCI-EOMPT and SS-B-EOMCC for the ionic and cova-
lent 1Σ states. The designation -X indicates the excited state at the ground state geometry, -0
indicates the ground state at Re



when states are weakly interacting and show a very weakly (i.e. sharp)
avoided crossing.

The upper state is calculated to have too high energy in SS-B-CI-EOMPT
and this is quite irrespective of the orbitals used. While the comparison of
SS-B-CI-EOMPT and SS-B-EOMCC is not bad it also clearly shows that it is
not reasonable to expect a method that is based on B-CI (or MCSCF
orbitals) to correctly describe the details of the crossing.

To gain some further insight into the potential of the perturbative vari-
ant we compare the state-averaged SA-EOMCC and SA-EOMPT results in
Fig. 9 and find an almost uniform shift across the nuclear distance range for
both curves. This result is quite promising as the relative energies between
the CC and PT approaches are fully comparable across the curves. All curves
in Fig. 9 are based on the same type of orbitals for all states, which have
been optimized in a state-averaged fashion, but in presence of dynamic cor-
relation. It is gratifying that these methods do capture the transition region
in which the states change character. It is not unlikely that the true transi-
tion is yet somewhat sharper than observed in these calculations as the
states are forced to be based on the same orbitals, increasing their potential
for interaction. Improved methodology and presumably a full CI bench-
mark are needed to confirm this speculation.
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FIG. 9
Comparison of perturbative and coupled-cluster type state-averaged Brueckner EOM ap-
proaches. The designation -X indicates the excited state at the ground state geometry, -0 indi-
cates the ground state at Re



CONCLUSIONS

The LiF potential energy curves corresponding to the two lowest “ionic”
and “covalent” 1Σ states provide a wonderful test case to benchmark
multireference methodologies. It is important to use sufficiently large basis
sets to capture the full complexity of the problem. We think it is quite illus-
trative of the richness of this problem that, while none of our calculations
gave correct results, we can draw clear conclusions regarding desirable and
lacking aspects of our various approaches. This is perhaps even more re-
markable in light of the fact that in order to draw these conclusions no
“across the board accurate” reference data were needed. A comparison of re-
sulting potential energy curves in different regions and simple logic suffice.
Moreover, not all our conclusions are negative. Let us start with positive
and semipositive conclusions.

1) The use of Brueckner orbitals in connection with state-selective
multireference treatments allows one to optimize orbitals in the presence of
dynamic correlation. Since surfaces may intersect at completely different
geometries at correlated and mean-field levels of theory this is likely to be
an important component of future multireference theories.

2) The definition of a zeroth-order Hamiltonian based on EKT yields
first-order amplitudes and energies in close agreement with the full EOMCC
results. Moreover the energy difference between CC- and PT-based ap-
proaches is nearly constant as a function of nuclear geometry, which is
most important in practical applications. The use of the corresponding de-
nominators in the CC iterative procedure leads to rapid convergence of the
equations, similar to closed-shell CC theory. These denominators are in ac-
cord with the physical processes described by the t-amplitudes, e.g. ioniza-
tion from orbitals lying in the active space. The fact that active orbitals are
uniquely associated with annihilation operators is special to the present
multireference formulation, which uses the antisymmetrized product of all
active/occupied orbitals as the vacuum. The present theory is very simple in
this respect.

3) The use of an average density matrix, even in state-specific calcula-
tions, comprised of 95% of the state of interest and 5% other states, to en-
large small eigenvalues in the density matrix yields a stable procedure to
solve the SS-EOMCC equations. It is possible to achieve convergence by
simply discarding “large eigenvalues” from the inverse, but this leads to
(small) discontinuities in the potential energy surfaces in particular in re-
gions where the MCSCF state of interest is essentially a single configuration
and near-zero eigenvalues of the density matrix are to be expected.
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4) SS-EOMCC is close to an internally contracted MRCC theory, and it is
computationally quite effective. The theory is not completely size-
extensive/size-consistent however, which is why we do not call it a MRCC
theory. If Brueckner type orbitals are used, the deviations from size-
consistency are very small in those cases we examined (less than 0.01
kcal/mol), implying that the size-consistency error might not have a practi-
cal importance. Let us note here that if the method is not based on
Brueckner orbitals the size-consistency error is significantly larger, due to
the increased importance of the 3h1p configurations to describe orbital re-
laxation effects.

5) State-averaged EOMCC procedures can be expected to yield smooth
potential energy surfaces, and they are likely qualitatively correct, certainly
close to the intersection. This conclusion is not very robust and it will de-
pend on the degree of accuracy one expects from the calculations. We were
surprised that SA-EOMCC does yield such reasonably looking potential en-
ergy curves for LiF, which is clearly a “worse case” scenario. The catch is
that by design the curves look reasonable, smooth and so forth, but this
does not guarantee their accuracy. We think these reservations apply with
equal force to multistate perturbation theory calculations reported in the
literature94,106–109. Nonetheless, qualitative insights are often of paramount
importance in difficult cases, and we think the simple SA-approach has its
appeal. In a way the state-averaged procedures are the black box procedures
in the multireference world. This is the more true in relation to MRCC
methods, where the choice of active orbital space is not so important, and
it is relatively straightforward to select the active space. However, it is also
clear that a state-averaged procedure cannot be expected to work across
complete potential energy surfaces, and hence erroneous potential energy
surfaces are a likely result of a too steadfast pursuit of this strategy. This is
evident in the asymptotic region for LiF, where the ionic state is invariably
found to be too low in energy in state-averaged calculations.

6) We used a Brueckner MCSCF+singles approach (coined Brueckner CI or
B-CI by us) to calculate states at essentially MCSCF level of accuracy, and in
this fashion resolved convergence issues in the pure MCSCF calculations re-
lated to root-flipping. We think this is a viable procedure that may be of
general interest.

7) We developed some powerful state tracking algorithms that home in
on a state while optimizing both orbital and cluster coefficients. In addi-
tion we can follow a state diabatically through a region of intersection,
which can be useful in practical applications.
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We also learned some very valuable lessons from clear-cut failures of our
formally best SS-B-EOMCCSD approach.

8) The results from SS-EOMCCSD calculations approach single-reference
CCSD accuracy in regions where Hartree–Fock is a good qualitative descrip-
tion, while it tends to be closer to CCSD(T) when the multireference char-
acter of the state is more pronounced. As a result complete potential energy
curves can be rather poorly described, certainly in larger basis sets. The
most promising remedy appears to be to add a connected triples correction
to the SS-EOMCC approach. The details of this are yet to be worked out.

9) There is a great danger in using non-Hermitian transformed
Hamiltonians in conjunction with (severely) truncated diagonalization
spaces. If eigenvalues and eigenstates become complex it is impossible to
define a meaningful single state and continue the iterative procedure in the
state-selective approaches. These problems can show up in regular EOMCC
approaches to calculate excited states, and they even more easily arise in
STEOM, certainly when conical intersections are sought in a geometry opti-
mization41. We think that unitary coupled-cluster theory in a Brueckner
variant, or closely related, the strongly connected coupled-cluster theory
proposed by Szalay, Nooijen and Bartlett122 may provide a more promising
avenue to solving this problem. Our experience with B-CI indicates that the
convergence of the orbital optimization equations, and tracking a particu-
lar state of interest, is not itself a big issue. We are hopeful therefore that re-
maining convergence problems that occurred in this work are associated
with complex roots of the transformed Hamiltonian.

10) We have learned once again during the course of this work to be cau-
tious to call any individual problem the last hurdle to victory.

It is a pleasure to present this work in this issue dedicated to the celebration of the seventieth birth-
day of Professor Josef Paldus. We as authors both hope to grow older following Joe’s example, resign-
ing to the comforting fact that nature posed us with some problems that were just too hard to crack.
We do hope that the multireference problem in electronic structure theory will lose some more of its
formidable fangs as time progresses. This research was sponsored by an innovation grant from the Na-
tional Science and Engineering Research Council (Canada).
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